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Exercise 9.1 Domino.

a) A domino set consists of all possible (g) + 6 = 21 different tiles of the form [z|y], where z and y
are numbers from {1,2,3,4,5,6}. The tiles are symmetric, so [z|y] and [y|z] is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any conse-
cutive tiles coincide.

b) What happens if we replace 6 by an arbitrary n > 2? For which n is it possible to line up all (g) +n
different tiles along a line?

Solution: We directly solve the general problem.

First we note that we may neglect tiles of the form [z|x]. If we have a line without them, then we can
easily insert them to any place with an x. Conversely, if we have a line with them then we can just
remove them. Thus the problem with and without these tiles are equivalent.

Consider the following graph G with n vertices, labelled with {1,. .., n}. We represent the domino tile
[z]y] by an edge between vertices x and y. Then the resulting graph G is a complete graph K, ie.,
the graph where every pair of vertices is connected by an edge. A line of domino tiles corresponds to
a walk in this graph that uses every edge at most once, and vice versa. A complete line (of all tiles)
corresponds to an Eulerian walk in G. Thus we need to decide whether G = K, has an Euler walk or
not.

K, is obviously connected. If n is odd then all vertices have even degree n — 1, and thus the graph is
Eulerian. On the other hand, if n is even then all vertices have odd degree n — 1. If n > 4 is even, then
there are more than 3 vertices of odd degree, and therefore K,, does not have an Euler walk. Finally,
for n = 2, the graph K, is just an edge and has an Euler walk. Summarizing, there exists an Euler walk



if n = 2 or n is odd, and there is no Euler walk in all other cases. Hence, it is possible to line up the
domino tiles if n = 2 or n is odd, and it is impossible otherwise.

Exercise 9.2  Post-Corona Party (1 point).

It is 2021, we have multiple Corona vaccines and the pandemic is over. Imagine you go to a party with
your friends. Assume that people shake hands with each other to introduce themselves.

Prove that at each party with at least two participants there are two people that shook hands with the
same number of people.

Hint: Model the problem as a problem defined on a graph. Define the set of vertices and the set of edges in
words.

Solution: Formally, a party can be seen as an undirected graph G = (V, E), where V is the set of
participants and, for u,v € V, the edge {u,v} is in F if person u and person v shook hands. The
degree of vertex deg(v) is equal to the number of people that v shook hands with. Thus, we have to
prove that for each undirected graph there are two vertices with the same degree.

The degree function takes values between 0 and n—1,i.e., forallv € V we have deg(v) € {0,1,...,n—
1}. Observe that if there is a vertex v € V with deg(v) = 0, there cannot be a vertex u € V with
deg(u) = m — 1 and vice versa. Thus, for each graph either deg(v) € {0,...,n — 2} or deg(v) €
{1,...,n — 1} must hold for all v € V. Because there are more vertices |V'| = n than different values
of deg(v) (namely n — 1), at least two vertices always must have the same degree.

Exercise 9.3  Graph connectivity (2 points).

In this exercise, you will need to prove or find counterexamples to some statements about the connec-
tivity of graphs. We first need to introduce/recall a few definitions.

Definition 1. A cycle is a sequence of vertices vy, . .., Uk, Vg1 With £ > 3 such that all vy, ..., vy are
distinct, v1 = vg41 and such that any two consecutive vertices are adjacent.

Definition 2. A graph is connected if there is a walk between every pair of vertices. It is called dis-
connected otherwise.

Definition 3. A vertex v in a connected graph is called a cut vertex (or articulation point) if the subgraph
obtained by removing v (and all its incident edges) is disconnected.

Definition 4. An edge e in a connected graph is called a cut edge (or bridge) if the subgraph obtained
by removing e (but keeping all the vertices) is disconnected.

In the following, we always assume that the original graph is connected. Prove or find a counterexample
to the following statements:
a) If a vertex v is part of a cycle, then it is not a cut vertex.

Solution:

The following graph is a counterexample:
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Indeed, v is clearly part of a cycle (the triangle uvw for example), but removing v yields the following

)]
=
o
=)
=
IS

w

The above graph is disconnected. Hence, v is also a cut vertex.
If a vertex v is not a cut vertex, then v must be part of a cycle.
Solution:

The following graph is a counterexample:

T

Indeed, v is not part of a cycle (remember that the vertices forming a cycle must be disjoint). How-
ever, removing v yields the following connected graph:

-

Hence, v is also not a cut vertex.

Remark. The following statement is true: If a vertex of degree at least 2 is not a cut vertex, then
it must lie on a cycle. (Proof: Consider two neighbours w1, uy of that vertex v. Since v is not a cut
vertex, after removing v there is still a path from u; to ug. Together with the edges {us, v} and
{v, u1}, this forms a cycle that contains v.)

If an edge e is part of a cycle (i.e. e connects two consecutive vertices in a cycle), then it is not a cut
edge.

Solution:

This statement is correct, and we can prove it as follows. Let G be a conncted graph and let e =
{v1,v2} be an edge of G that is part of a cycle vy ... vy for some k > 3. To show that e is not a cut
edge, we will show that any two vertices u and w of G can be joined by a walk that does not use the
edge e. So consider any two vertices u and w. Since G is connected, there is a walk uuy . . . u,w from
u to w in G. If the walk doesn’t use the edge e, then we are already done. If the walk does use edge
e, this means that the vertices v, and vy must appear consecutively (at least once) in uuy . .. uyw.
We replace every appearance of v1vs in the walk by the path vivgvg_1 ... v2, and every apperance
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of vavy by the same path in the other direction vovs . .. viv1. This yields a walk from w to w that
does not use the edge e and concludes the proof.

If an edge e is not a cut edge, then e must be part of a cycle.
Solution:

This statement is correct, and we can prove it as follows. Let G be a conncted graph and let e =
{v1,v2} be an edge of G that is not a cut edge. Then any pair of vertices in G can be joined by
a walk that doesn’t use the edge e. In particular, there is a walk from v; to v that doesn’t use e.
Moreover, we can turn this walk into a path. Indeed, for any vertex u that appears more than once
in the walk, we just remove the whole walk between its first appearance and its last appearance in
the walk. Doing this sequentially along the walk, we obtain a path vy, u1, ..., ug, v2 from vy to vo
that does not use e. In particular, this path must contain at least 3 vertices (the only way to have a
path from v; to v using 2 vertices is by using the edge €). We can then close this path with the edge
e to form a cycle v, uq,. .., u, v2,v1, and hence e is part of a cycle.

If u and v are two adjacent cut vertices, then the edge e = {u, v} is a cut edge.
Solution:

The following graph is a counterexample:
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Indeed, removing u yields

A

while removing v yields

.

and both of these graphs are disconnected, which means that v and v are cut vertices. However,
removing the edge e = {u, v} yields the following connected graph:
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Hence, e is not a cut edge.

If e = {u, v} is a cut edge, then u and v are cut vertices. What if we add the condition that u and v
have degree at least 2 ?

Solution:

The following graph is a counterexample:



Indeed, removing e yields the following graph:
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The above graph is disconnected, so e is a cut edge. However, removing v yields the following
connected graph:

S

Hence, v is not a cut vertex.

If we add the condition that v and v have degree at least 2, then the statement is actually correct. We
will only show that u is a cut vertex, since the proof that v is also a cut vertex is exactly the same
with the two vertices exchanged.

Since deg(u) > 2, u must have a neighbor v/ # v in the original graph G. We claim that after
removing u and all its incident edges, there is no walk from u’ to v in the obtained subgraph G’,
which means that it is disconnected and thus u is indeed a cut vertex.

Suppose by contradiction that there is a walk from «’ to v in G’. Using the same trick as in part d),
we can turn this walk into a path 7 from «’ to v. Since u’ # v, this path must use at least one edge.
Since every edge incident to u in G was removed to create G’,  does not use any edge incident to
u, and in particular it does not use the edge e nor the edge uw’. But then we obtain a cycle in G by
concatenating the path 7 with the edge e and then uu’ (note that this cycle indeed contains at least
3 edges, and hence 3 vertices). So e is part of a cycle in GG, and by part c) it therefore cannot be a cut
edge. This is the desired contradiction.

Exercise 9.4  Data structures for graphs.
Consider three types of data structures for storing a graph G with n vertices and m edges:
a) Adjacency matrix.

b) Adjacency lists:
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c) Adjacency lists, and additionally we store the degree of each node, and there are pointers between
the two occurences of each edge. (An edge appears in the adjacency list of each endpoint).

For each of the above data structures, what is the required memory (in ©-Notation)?
Solution: ©(n?) for adjacency matrix, ©(n + m) for adjacency list and improved adjacency list.

Which runtime (worst case, in ©-Notation) do we have for the following queries? Give your answer
depending on n, m, and/or deg(u) and deg(v) (if applicable).

(i) Input: A vertex v € V. Find deg(v).

Solution: ©(n) in adjacency matrix, ©(1+deg(v)) in adjacency list, ©(1) in improved adjacency
list.

(ii) Input: A vertex v € V. Find a neighbour of v (if a neighbour exists).
Solution: ©(n) in adjacency matrix, ©(1) in adjacency list and in improved adjacency list.
(iii) Input: Two vertices u,v € V. Decide whether v and v are adjacent.

Solution: ©(1) in adjacency matrix, ©(1 + min{deg(v), deg(u)}) in adjacency list and in impro-
ved adjacency list.

(iv) Input: Two adjacent vertices u, v € V. Delete the edge e = {u, v} from the graph.

Solution: O(1) in adjacency matrix, ©(deg(v)+deg(u)) in adjacency listand © (min{deg(v), deg(u)})
in improved adjacency list.

(v) Input: A vertex u € V. Find a neighbor v € V of u and delete the edge {u, v} from the graph.
Solution: ©(n) in the adjacency matrix (©(n) for finding a neighbor and ©(1) for the edge dele-
tion).

O(1+ {ma>}< o deg(w)) for the adjacency list (©(1) for finding a neighbor and ©( {ma)}c . deg(w))
wu,w e wiu,w e
for the edge deletion).

©(1) for the improved adjacency list (O(1) for finding a neighbor and (1) for the edge deletion).



(vi) Input: Two vertices u,v € V with u # v. Insert an edge {u, v} into the graph if it does not exist
yet. Otherwise do nothing.

Solution: ©(1) in adjacency matrix, ©(1 + min{deg(v), deg(u)}) in adjacency list and in impro-
ved adjacency list.

(vii) Input: A vertex v € V. Delete v and all incident edges from the graph.

Solution: ©(n?) in adjacency matrix, ©(n+m) in adjacency list and ©(n) in improved adjacency
list.

For the last two queries, describe your algorithm.

Solution: Query (vi): We check whether the edge {u, v} does not exist. In adjacency matrix this in-
formation is directly stored in the u-v-entry. For adjacency lists we iterate over the neighbours of u
and the neighbours of v in parallel and stop either when one of the lists is traversed or when we find v
among the neighbours of u or when we find « among the neighbours of v. If we didn’t find this edge,
we add it: in the adjacency matrix we just fill two entries with ones, in the adjacency lists we add nodes
to two lists that correspond to u and v. In the improved adjacency lists, we also need to set pointers
between those two nodes, and we need to increase the degree for v and v by one.

Query (vii): In the adjacency matrix we copy the complete matrix, but leave out the row and column
that correspond to v. This takes time ©(n?). There is an alternative solution if we are allowed to rename
vertices: In this case we can just rename the vertex n as v, and copy the n-th row and column into the
v-th row and column. Then the (n — 1) X (n — 1) submatrix of the first n — 1 rows and columns will be
the new adjacancy matrix. Then the runtime is ©(n). Whether it is allowed to rename vertices depends
on the context. For example, this is not possible if other programs use the same graph.

In the adjacency lists we remove v from every list of neighbours of every vertex (it takes time © (n+m))
and then we remove a list that corresponds to v from the array of lists (it takes time ©(n)). In the im-
proved adjacency lists we iterate over the neighbours of v and for every neighbour © we remove v from
the list of neighbours of u (notice that for each u we can do it in ©(1) since we have a pointer between
two occurences of {u,v}) and decrease deg(u) by one. Then we remove the list that corresponds to v
from the array of lists (it takes time ©(n)).

Exercise 9.5 Walks in a graph.

Recall that a walk of length k in a graph G = (V, E) is a sequence of vertices v, vy, . .., v such that
for 1 < i < k there is an edge {v;_1,v;} € E.

Assume that you are given a graph G = (V, E), with V' = {v1, ..., v,}, and a matrix M that contains
for every pair v;, v; € V in the entry M;; the number of walks of length k from v; to v;. For every pair
vk, v¢ € V, find a formula for computing the number of walks of length £ + 1 from vy to vy from that
data.

Solution: The walks of length k can be extended to walks of length k + 1 by adding an edge. Formally,
the number of walks of length £ + 1 from v; to v; is given by

ME= > My, 1)

vEN (v;)

where N (vj) = {v; € V : {v;,v;} € E} denotes the neighbors of v;.



